Loss of Na+ channel inactivation by anemone toxin (ATX II) mimics the myotonic state in hyperkalaemic periodic paralysis.

نویسندگان

  • S C Cannon
  • D P Corey
چکیده

1. Mutations that impair inactivation of the sodium channel in skeletal muscle have recently been postulated to cause several heritable forms of myotonia in man. A peptide toxin from Anemonia sulcata (ATX II) selectively disrupts the inactivation mechanism of sodium channels in a way that mimics these mutations. We applied ATX II to rat skeletal muscle to test the hypothesis that myotonia is inducible by altered sodium channel function. 2. Single-channel sodium currents were measured in blebs of surface membrane that arose from the mechanically disrupted fibres. ATX II impaired inactivation as demonstrated by persistent reopenings of sodium channels at strongly depolarized test potentials. A channel failed to inactivate, however, in only a small proportion of the depolarizing steps. With micromolar amounts of ATX II, the ensemble average open probability at the steady state was 0.01-0.02. 3. Ten micromolar ATX II slowed the relaxation of tension after a single twitch by an order of magnitude. Delayed relaxation is the in vitro analogue of the stiffness experienced by patients with myotonia. However, peak twitch force was not affected within the range of 0-10 microM ATX II. 4. Intracellular injection of a long-duration, constant current pulse elicited a train of action potentials in ATX II-treated fibres. After-depolarizations and repetitive firing often persisted beyond the duration of the stimulus. Trains of action potentials varied spontaneously in amplitude and firing frequency in a similar way to the electromyogram of a myotonic muscle. Both the after-depolarization and the post-stimulus firing were abolished by detubulating the fibres with glycerol. 5. We conclude that a loss of sodium channel inactivation alone, without changes in resting membrane conductance, is sufficient to produce the electrical and mechanical features of myotonia. Furthermore, in support of previous studies on myotonic muscle from patients, this model provides direct evidence that only a small proportion of sodium channels needs to function abnormally to cause myotonia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation.

Hyperkalaemic periodic paralysis, paramyotonia congenita, and potassium-aggravated myotonia are three autosomal dominant skeletal muscle disorders linked to the SCN4A gene encoding the alpha-subunit of the human voltage-sensitive sodium channel. To date, approximately 20 point mutations causing these disorders have been described. We have identified a new point mutation, in the SCN4A gene, in a...

متن کامل

Effects of ApC, a sea anemone toxin, on sodium currents of mammalian neurons.

We have characterized the actions of ApC, a sea anemone polypeptide toxin isolated from Anthopleura elegantissima, on neuronal sodium currents (I(Na)) using current and voltage-clamp techniques. Neurons of the dorsal root ganglia of Wistar rats (P5-9) in primary culture were used for this study. These cells express tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) I(Na). In curr...

متن کامل

Confirmation of linkage of hyperkalaemic periodic paralysis to chromosome 17.

Linkage studies were performed in six European families with hyperkalaemic periodic paralysis (PPII) with myotonia, an autosomal dominantly inherited disorder characterised by episodic weakness. The weakness is caused by non-inactivating sodium channels of reduced single channel conductance of the muscle fibre membrane. Recently, portions of the gene coding for the alpha subunit of the sodium c...

متن کامل

Slowing Na+ channel inactivation prolongs QT interval and aggravates adrenaline-induced arrhythmias.

We investigated the effects of prolonged repolarization induced by slowed inactivation of Na+ channel on adrenaline-induced arrhythmias in halothane anesthetized, closed-chest dogs. We used sea anemone toxins (ATX-II and Anthopleurin-A) to prolong ventricular repolarization and examined their effects on adrenaline arrhythmias. Sea anemone toxins prolonged the QTc- and JTc-intervals (P<0.01), bu...

متن کامل

Augmentation of Recovery from Inactivation by Site-3 Na Channel Toxins A Single-Channel and Whole-Cell Study of Persistent Currents

Site-3 toxins isolated from several species of scorpion and sea anemone bind to voltage-gated Na channels and prolong the time course of I Na by interfering with inactivation with little or no effect on activation, effects that have similarities to those produced by genetic diseases in skeletal muscle (myotonias and periodic paralysis) and heart (long QT syndrome). Some published reports have a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of physiology

دوره 466  شماره 

صفحات  -

تاریخ انتشار 1993